
NASA Technical Memorandum 4095 

High-speed Real-Time Animated 
Displays on the ADAGE@ RDS 3000 
Raster Graphics System 

William M. Kahlbaum, Jr., and Katrina L. Ownbey 
Langley Researcb Center 
Ha mpton, Virginia 

National Aeronautics and 
Space Administration 
Off ice of Management 
Scientific and Technical 
Information Division 

1989 



The use of trademarks or names of manufacturers in this 
report is for accurate reporting and does not constitute an 
official endorsement, either expressed or implied, of such 
products or manufacturers by the National Aeronautics and 
Space Administration. 



Introduction Symbols and Acronyms 

Realistic simulation of an aircraft cockpit in a 
flight simulator requires dynamic instrument panel 
displays that provide flight information to the pilot. 
These displays, consisting of dynamic lines, polygons, 
and alphanumeric characters, must be updated at a 
sufficiently high rate to realistically simulate actual 
flight displays. The displays for the Advanced Con- 
cepts Simulator (ACS) at  NASA Langley Research 
Center are generated on the ADAGE Raster Dis- 
play System 3000 (RDS 3000). An overall descrip- 
tion of the RDS 3000 can be found in reference 1. 
Originally the display programs were written using 
straightforward sequential programming techniques 
in the IKONAS Display Language (IDL2). (See 
ref. 2.) IKONAS was the former designation of the 
RDS 3000. The resulting update rate of 4 frames per 
second for the primary flight display was insufficient 
for a realistic simulation. To correct this situation, 
the programming techniques, language implementa- 
tion, and hardware characteristics were extensively 
studied. Improved programming techniques were de- 
veloped and the language implementation was re- 
vised to take better advantage of the high-speed char- 
acteristics of the RDS 3000 hardware. The result was 
a fourfold increase in the update rate to 16 frames per 
second. 

Each of the three processors in the RDS 3000 is 
designed to perform certain specialized tasks. The 
main processor, the Bipolar Processor System (BPS), 
is the master processor of the system, which is nor- 
mally used to draw lines, polygons, and characters as 
well as to perform system control functions. The ma- 
trix multiplier (MA1024) is a slave processor that is 
designed to perform coordinate axis transformations 
at  high speed. The Advanced Graphics Generator 
(AGG4) (ref. 3) is a second slave processor that may 
be used to draw characters at  a higher speed than 
the BPS. Speed has been improved primarily by o p  
erating the processors and certain hardware functions 
in parallel with each other whenever possible and 
by revising the system microcode. The microcode 
revisions mainly focused on increasing the speed of 
character generation. Speed improvements here re- 
sulted from (1) using the parallel processing capabil- 
ities of the AGG4 and (2) using the AGG4 to take 
advantage of certain high-speed characteristics of the 
display memory that were not previously used. This 
paper describes techniques used to increase an- 
imation update rates by parallel processing and 
microcode improvements. A sample program illus- 
trating the use of these techniques is included as the 
appendix. 

k integer specifying increasing 
horizontal displacement, 
dimensionless 

n 

X 

integer specifying the multiple 
of 32 pixels of the vertical 
displacement, dimensionless 

vertical screen displacement, 
pixels 

Y horizontal screen displacement, 

Acronyms: 
AGG4 Advanced Graphics Generator, 

Version 4 

BPS Bipolar Processor System 

CHAR character command in the 

CXBS channel crossbar switch 

FBC frame buffer controller 
FBM frame buffer memory 

GM graphics memory 

IDL2 IKONAS Display Language, 

IKONAS 

pixels 

IDL2 display language 

Version 2 

previous designat ion of the 
RDS 3000 system 

IOR inserter output register 

LUVO color map and video output 
module 

MA1024 matrix multiplier 

OBFM onboard font memory on the 
AGG4 processor board 

PING buffer area in memory 

PONG buffer area in memory 

RDS 3000 Raster Display System 
(current designation of the 
graphics system) 

SR8 system scratch memory 
XBS crossbar switch 

Display Generation 
Description of the Displays 
The primary flight display for the Advanced Con- 

cepts Simulator is shown in figure 1. The upper half 
of the display is the attitude display indicator (ADI), 

I 



which provides the pilot with his primary flight infor- 
mation. Roll and pitch information is presented by 
the artificial horizon and pitch ladder at  the center. 
Airspeed and altitude are displayed on the dial indi- 
cators at  the upper left and right. Directional com- 
mand information is presented by the circular track 
ball at the center and a speed error is presented by 
the vertical bar to the left of center. Various com- 
mand and alert messages are presented by the char- 
acter strings; and horizontal and vertical errors, by 
the pointers labeled “H” and “V.” The lower half 
of the display presents navigational information in 
which the circular compass rose presents heading in- 
formation and various special symbols such as the 
small triangle and hexagon present navigational aids. 
Additional navigational information is presented by 
the character strings. In both displays some char- 
acter strings are stationary and some move about 
the screen; some characters change and some do not. 
Tracking indicators are displayed above the compass 
rose in the form of a diamond and a double square. 

The modules of the RDS 3000 that generate all 
the displays are shown in figure 2. All intermodule 
data corrimuriication is over the 32-bit IKONAS bus 
and several auxiliary buses. Video information passes 
over the video bus. All images are stored in the frame 
buffer memory (FBM), which has a maximum display 
resolution of 1024 by 1024 pixels by up to 24 bits per 
pixel depending on the amount of memory available. 
Images are read from the frame buffer memory by 
the frame buffer controller (FBC) and start toward 
the video output. The crossbar switch (XBS) and 
the channel crossbar switch (CXBS) work together 
in a manner analogous to a telephone switchboard to 
allow selected individual and groups of frame buffer 
bit planes to be displayed. The color maps (LUVO) 
convert the pixel information selected by the cross- 
bar switches to red, green, and blue (RGB) analog 
video signals for display on the video monitor. The 
host interface controls communication between the 
RDS 3000 system and the host machine, which is a 
Digital Equipment Corp. VAX 8650 superminicom- 
puter. The main processor (BPS) processes program 
instructions which are stored in the scratch pad mem- 
ory (SR8). Communication between the BPS and the 
scratch pad memory is over the IKONAS bus. The 
matrix multiplier (MA1024) performs matrix opera- 
tions required for coordinate transformations. Vector 
data to be transformed are stored in the scratch pad 
memory and communication between the MA1024 
and the scratch pad memory is over an auxiliary 
bus. This auxiliary bus allows the transformations 
to proceed without interfering with other data trans- 
fers taking place over the IKONAS bus. The parallel 
processor (AGG4) is used for character generation. 

All data needed by the AGG4 to draw the charac- 
ters are stored in a small memory area on the AGG4 
board known as the onboard font memory (OBFM). 
All communication between the processor and this 
memory area is over an onboard bus, so the only time 
that it must access the IKONAS bus is when a char- 
acter or part of a character is ready to be written to 
the frame buffer memory. In contrast, the BPS must 
access the IKONAS bus to get vector and polygon 
vertex information and to write the resulting image 
information to the frame buffer memory. 

Display programs are written in an assembly 
level language known as IDL2. Commands in this 
language perform operations such as drawing lines, 
polygons, and character strings as well as two- and 
three-dimensional coordinate transformations , clip- 
ping, and perspective projection. Display commands 
are stored in the scratch pad memory and inter- 
preted sequentially by a dispatcher program which 
runs in the BPS. As each display command is in- 
terpreted, this dispatcher directs the execution of a 
block of microcode resident in the microcode mem- 
ory (MCM). Communication between the BPS and 
the microcode memory is by way of an auxiliary bus 
to prevent the loss of speed that would occur if the 
IKONAS bus were used. Several microcode files are 
included with the system and the one used is de- 
termined by the hardware configuration. New com- 
mands may be created and existing ones modified by 
using tools that are included with the system. These 
tools were used to revise the microcode to improve 
character generation speed. A compiler for IDL2 and 
a microcode assembler are used to create the exe- 
cutable files. 

Theory of Operation 
Animation of a display is accomplished by repeat- 

edly drawing new images and presenting them to the 
observer. These images are created as bit patterns in 
the frame buffer memory. Smooth animation is ac- 
complished by repeating this process at  high speed, 
typically at least 16 times per second. To prevent 
the observer from seeing the image creation process, 
a technique known as double buffering is used. The 
frame buffer memory is partitioned into two identi- 
cally sized areas, or buffers, commonly referred to 
as PING and PONG, and while the new animation 
frame is being created in one buffer, the current com- 
pleted frame is being displayed to the observer from 
the other. In the example of figure 3, bit planes 0 
through 3 constitute the PING buffer and bit planes 
8 thr‘ough 11 constitute the PONG buffer. Only 
dynamic parts of the image are drawn to these bit 
planes. Static imagery that does not change on the 
screen is drawn to the static bit planes (4 through 7) 

2 



when the program is initialized and never changed. 
The software-controlled write mask is used to select 
the bit planes to be written into, and the software- 
controlled crossbar switches (XBS and CXBS) select 
the bit planes to be passed onto the LUVO’s for out- 
put to the video. The software alternately selects ei- 
ther PING or PONG to be combined with the static 
bit planes for output. The case shown in the figure 
will display the PONG buffer while the next dynamic 
frame imagery is being written to the PING buffer by 
the system processors. The 8-bit value coming out of 
the crossbar switches is applied to the input of the 
three LUVO’s and is a pointer to the same location in 
each of the color maps. Each color map in the LUVO 
is a 256-word 10-bit table of memory. As each pixel 
is addressed, the resulting pointer value output from 
the crossbar switches points to the same location in 
each LUVO and the values stored in each of these 
determine the amount of red, green, and blue that 
will be displayed at  that pixel location. 

Animation Process 

Four steps must be carried out to create the new 
animation frame in either buffer: 

1. 

2. 

3. 

4. 

Erasure of the previous animation frame from the 
buffer 
Coordinate transformation of vectors, polygons, 
and character locations to create coordinate in- 
formation for the next frame 
Drawing the new animation frame vectors, poly- 
gons, and character strings into the newly erased 
buffer 
Displaying the new animation frame buffer to the 
observer 

These steps must be executed at  maximum speed for 
a smoothly animated display. Speed is maximized 
by minimizing the number of instructions and by 
executing them in parallel whenever possible. Also, 
microcode may be created or revised to optimize 
speed. 

One more item must be considered in the image 
generation process. Step 4 of the display generation 
process described above is performed by the XBS 
and must be synchronized with the video sweep of 
the display monitor. This step determines what 
the observer sees and normally occurs during the 
vertical blanking interval of the video sweep. This 
synchronization is accomplished by using an IDL2 
instruction called WAITB, which simply delays the 
changeover of the XBS until the start of the vertical 
blanking interval. Since the changeover requires less 
time than the blanking interval, it will be invisible to 
the observer. Also since steps 1 through 3 are being 

applied to the nondisplayed buffer, there is no need 
to synchronize them. 

Erase Function 
Currently the erase function can be performed 

in two ways, and selection of the method can have 
an impact on update rate. The two methods are 
known as autoclear and selected area erase. The 
first method, autoclear, is a hardware function in 
the frame buffer controller (FBC). Two steps are 
required: (1) select the bit planes to be erased by 
setting an erase mask and (2) set a bit in one of 
the FBC control registers. Once these steps are 
completed, the bits of each pixel selected by the erase 
mask are erased as each pixel is selected for display 
by the video output circuitry of the FBC. Autoclear 
is normally set up right after the XBS is changed 
during the vertical blanking interval and is left on 
for two full video field periods. The main advantage 
of this method is that the BFS is free to do other 
things during the erase time. The main disadvantage 
is that it requires one complete video frame interval 
which is 32 msec in the high-resolution mode used in 
these displays. During the erase time no drawing 
may be safely done to the frame buffer memory. 
The second method, selected area erase, consists of 
drawing a filled rectangle in the background color 
over the entire area that needs to be erased. The 
upgraded version of the IDL2 rectangle fill command 
is capable of erasing the entire high-resolution screen 
in 28 msec. The main disadvantage of this method 
is that the BPS is tied up during the entire erase 
time. However, if the area to be erased is small 
relative to the entire screen, then selected area erase 
requires less time than autoclear. This can be an 
advantage even though the BPS is busy during the 
erase time. There is no straightforward method for 
determining which method is best, and the choice 
depends on the nature of the display and is best made 
by experimentation. 

Speed Improvements by Programming 
Techniques 
The display program was originally written us- 

ing sequential in-line code to implement steps 1 
through 4 described above. Autoclear was used for 
erasure, but nothing was done by the BPS during the 
32-msec erase time. This resulted in an animation 
update rate of 4 frames per second. Figure 4 shows 
the timing for this method. During the erase interval 
no new imagery may be drawn into the buffer. If im- 
agery were created at a screen location that had not 
yet been erased, it would disappear when the erase 
did occur. However, nondrawing functions such as 

3 



coordinate transformations, clipping, and perspec- 
tive projection may be performed during the erase 
interval. The display program was therefore adjusted 
as illustrated in the timing diagram of figure 5. This 
change increased update rate from 4 to 8 frames per 
second. Further increase in update rate was pre- 
vented because of the slowness of the character gen- 
erator which ran on the BPS processor. Installation 
of the Advanced Graphics Generator (AGG4) was 
expected to increase the drawing speed of the char- 
acters, but did not. The remainder of this paper deals 
with the extensive analysis of this problem which led 
to significant revisions of the microcode associated 
with the character generation command. 

Speed Improvements by Microcode Revision 
The original microcode provided with the AGG4 

features of the processor and the frame buffer display 
memory. These problems fell into three categories: 
(1) not taking advantage of the parallel processing 
capabilities of the AGG4 processor, (2) not taking 
advantage of the multiple pixel write capabilities of 
the GM-type FBM boards which were installed in 
the system, and (3) drawing characters of only one 
color and one size in each call of the command. 

The original character draw command (CHAR) 
for the AGG4-based system consisted of microcode 
files that ran on both the BPS and the AGG4. The 
BPS code passed screen coordinates and string infor- 
mation for each character string to the AGG4 and 
then started the AGG4 microcode which did the ac- 

BPS code passed the parameters for one string at a 
time to the AGG4 and then waited for it to complete 
its rendition before sending the parameters for the 
next string. This prevented any parallel operations. 
Also, the AGG4 microcode processed the characters 
one pixel at a time. While this did have the advan- 
tage of allowing rotation and magnification of char- 
acters, it did not take advantage of the multiple pixel 

ory boards installed in the system, that is, being able 
to write 32 pixels at  a time to the frame buffer mem- 
ory rather than only 1. Multiple pixel writes do not 
easily allow for rotation and magnification, but the 
speed increase far outweighs this loss of flexibility. 

The revised microcode for the two processors cor- 
rects the problems described in the previous para- 
graph and adds several other features. To achieve 
parallel processing and drawing different sized and 
color characters in a single call, the BPS microcode 
is now designed to pass to the AGG4 all the param- 
eters (coordinates and character string information) 
for all strings in a single call. These parameters are 

4 

I did not take full advantage of several advanced design 

I 

I tual character rendition. As originally designed, the 

I write capabilities of the GM-type frame buffer mem- 

I 

stored in the onboard font memory (OBFM) and up 
to 500 characters distributed over 100 strings may 
be handled with a single CHAR command. After 
the data transfer is complete, the BPS sends a com- 
mand to the AGG4 to start drawing. Then the BPS 
is free to do other things such as drawing vectors. 
After receiving the draw command from the BPS, 
the AGG4 proceeds to draw the characters. A sta- 
tus bit is set by the AGG4 so that the BPS does not 
attempt to start another CHAR command until the 
AGG4 is finished. Figure 6 shows the activity of the 
three processors when operating in this parallel mode 
when using the autoclear erase mode and figure 7 
shows it when using the selected area erase mode. 
Rotation and magnification of the characters are de- 
signed into the character font data, which also reside 
in the OBFM. To correct for this loss of the zoom 
and rotate capabilities, the character fonts are de- 
signed with a 90" rotation in the plane of the screen. 
This compensates for the monitor orientation in the 
cockpit. Different fonts are provided for the different 
character sizes. Also, some special symbols such as 
the track ball indicator in the attitude display indica- 
tor and the navigational symbols are implemented as 
special characters. Several other features built into 
the command include the capability to draw charac- 
ters of different sizes and colors in a single CHAR 
command and the ability to disable the erase func- 
tion of the AGG4 microcode. 

With the parallel processing capabilities of the 
revised microcode illustrated in figures 6 and 7, the 
limiting speed is determined by the processor that 
takes the longest to complete its tasks. If the BPS 
completes its work at  time t 2  when the AGG4 is still 
busy, then the AGG4 sets the time limit. Then the 
time required to draw the vectors is essentially free 
because the BPS would otherwise be idle. If the time 
for the BPS to complete extends out to t 2 m ,  the 
situation is reversed and the BPS processing time 
determines the overall speed. 

High-speed Character Generation 
Image Memory Mapping 

An understanding of image mapping in the frame 
buffer memory (FBM) is necessary to understand 
how characters are drawn. Figure 8 illustrates this 
mapping for the orientation of the monitor used in 
this project (turned 90" on its side). Each small rect- 
angle (referred to as an "FBM slice") representing 
32 pixels in the vertical direction is mapped into one 
32-bit word of memory. Thirty-two of these FBM 
slices are required to define one raster line, which is 
1024 pixels high by 1 pixel wide, and these 32 FBM 
slices are mapped into 32 contiguous words of the 



FBM. Moving vertically in figure 8 involves the com- 
bination of changing the bit number within a word 
and changing the word address in memory by a value 
denoted as n in the figure. Moving horizontally in- 
volves holding the bit number within the word con- 
stant and changing the word address by increments 
of 32 which is designated by k in the figure. 

The next step is to show how the pixel pattern 
representing a character is written into the FBM. 
This process for the letter “R” is illustrated in fig- 
ure 9. The character is represented by a series of ver- 
tical pixel patterns superimposed on the pixel array 
of the FBM. The vertical slices of the character are 
stored as bit patterns in a series of contiguous words 
in the onboard font memory (OBFM). In this case 
the character slices are 16 bits high so that 2 slices 
are stored in each 32-bit OBFM word and 5 OBFM 
words are required to store the 10 slices of the ex- 
ample character. Figure 9 illustrates the manner in 
which the 16-bit slices are stored in the 32-bit words. 
The five words of memory required for each character 
are known as a font entry and each slice of the char- 
acter is called a font slice. The collection of five-word 
entries for the entire character set is called the font 
table. The problem to be solved is how the AGG4 
hardware transfers the font slice entries to the FBM. 
Special hardware illustrated in figure 10 is required 
to accomplish this transfer, which is done 32 bits at 
a time. All the modules in figure 10 are located on 
the AGG4 circuit board. 

Positional Computations for the Character 
The font array for each character is transferred 

from the OBFM to the FBM one font slice at a 
time. The data flow follows the dashed arrows in 
figure 10. Figure 11 shows the condition of the font 
entry as it passes through each hardware component 
of the barrel shifter and of the inserter output register 
(IOR). The example shown is for the first font slice 
of the character “R” shown in figure 9 with the 
character positioned vertically four pixels, or bits, 
beyond a word boundary of the FBM memory slices. 
The processing steps are as follows: 

‘1. A font entry word (representing the first two font 
slices) is transferred from the OBFM to the 32-bit 
slice register. Note that the upper and lower 16 
bits in the slice register of figure 11 correspond to 
the odd and even font slices of figure 9. 

2. The first font slice located in the lower 16 bits of 
the slice register is rotated from lower to higher 
bit positions by up to 15 bit positions with the 
higher bits being wrapped around to the lower 
bit positions. The amount of rotation is deter- 
mined by how far the desired vertical position of 

3. 

4. 

the character differs from an integer multiple of 32 
(which is the vertical separation between FBM 
slices). The barrel shifter accomplishes this rota- 
tion operation in one microcode instruction time 
to save processing time. In the example, the rota- 
tion is four bits which will position the character 
with a four-pixel offset beyond an FBM slice word 
boundary. 
The rotated font entry (16 bits) is then written 
to the lower and the upper 16 bits of the IOR. 
There are now two copies of the rotated font 
entry. The choice of the bits to be output is 
controlled by the left and right mask values, 
which are in turn determined by the offset value. 
The location of the left mask is equal to the offset 
(in this case four bits). All bits numbered less 
than the position of the left mask are turned off. 
The position of the right mask is 16 bits greater 
than the left mask and all bits numbered greater 
than it are turned off. When the offset exceeds 
16 bits, the rotation is 

Rotation = Offset - 16 bits 

Also two FBM writes are necessary as shown in 
figure 12 (for an X offset of 20 pixels) to include 
the portion of the IOR output that spills over into 
the next FBM slice. The location of the left mask 
for the FBM write to slice n is still equal to the 
offset and the right mask is at bit 31. The left 
mask for the FBM write to slice (n+ 1) is at bit 0 
and the location of the right mask is 

Right mask = Offset - 16 bits 

Note that the barrel shifter rotation is the same 
for the offset of 4 and 20 bits and that the 
appropriate contents of the IOR is selected by 
the setting of the left and right masks. 

Once the output for the first 16-bit font slice 
is complete, steps 1 through 4 are then repeated 
for the upper 16 bits of the contents of the slice 
register. Then this entire procedure is repeated 
for the remaining font slices in the character. For 
characters that are 32 pixels high, only one font slice 
is contained in each 32-bit font word in the OBFM. 
Since the barrel shifter can handle only 16 bits at a 
time, two passes through the procedures described 
above are necessary to process one font slice. Also, 
the spillover to the next FBM slice with its associated 
additional processing occurs whenever the offset is 
1 bit or greater. 

The special case of zero offset which occurs when 
the X coordinate is an integer multiple of 32 is worth 

5 



noting. In this case no rotation is necessary and the 
mask values are fixed at 

Left mask = 0 
Right mask = 15 

for the 16-pixel font and 
Left mask = 0 
Right mask = 31 

for the 32-pixel font. The procedures described 
above reduce to simply writing the font slices out 
via the IOR. This requires less processing time and 
may be used advantageously to speed up character 
generat ion. 

Figure 13 shows the font bit manipulation for the 
whole character “R for several offset values ranging 
from 0 to 24 pixels. 

Frame Buffer Memory Writes 
The results of the operations described in the pre- 

vious section are output from the inserter output reg- 
ister where either the font bit pattern or its comple- 
ment is available for output. This output may go 
to either the FBM for display or back to the OBFM 
to be available for further processing. The comple- 
mented form of the IOR output must be written to 
the FBM because of the manner in which the GM- 
type FBM boards work. In the FBM write, the pixel 
value as found in the IOR is not written directly to 
the FBM. Instead the contents of the IOR is written 
to the FBM mask register and the FBM mask register 
controls the write operation to the FBM according to 
the following rules: 
1. If the FBM mask register value is 1, then the pixel 

in the FBM is unchanged. 
2. If the FBM mask register value is 0, then the 

contents of the FBM shade register is written to 
the pixel. This shade register resides on the GM 
memory boards and is normally preloaded during 
program initialization. 

In order for a pixel bit to be turned on, two condi- 
tions must be met: (1) the bit must be a 1 in the 
shade register and (2) the corresponding bit of the 
write mask must be a 1. This write mask is also 
preloaded, normally at  program initialization. Fig- 
ure 14 illustrates this point for 2 pixel locations of 
the 32 available from the IOR. The upper half of the 
figure shows the state of two adjacent pixels prior to 
a write from the IOR. The pixel value at  location 0 
of the IOR is 1. Therefore, that pixel remains un- 
changed no matter what the shade and write mask 
values are set to and that pixel value in the lower 
portion of the figure is unchanged. The next pixel in 
the IOR is set to a value of 0. Now the shade value as 
modified by the write mask is written to the second 

pixel location at  the bottom of the figure. This pro- 
cess is repeated for the remaining pixels of the FBM 
slice as shown by bits 2 through 31. The value in a 
particular bit location of the shade register is written 
to the FBM only if the corresponding write mask bit 
is 1. 

The data writing characteristics of the FBM 
boards described above mean that a character is 
not automatically erased by setting the appropriate 
bits to a value of 1 in the IOR output. Therefore, 
the erasure of characters requires a separate opera- 
tion. Specifically, all pixels that are on in a charac- 
ter and need to be turned off must be written with 
a shade value of 0 and all write mask bits turned 
on. The most time-consuming way of accomplish- 
ing this would be to redraw all characters with the 
shade value set to 0. A more efficient way, which 
works equally well, is to draw a rectangle at  least as 
big as the character with the shade set to 0. This is 
accomplished by knowing the size and location of the 
character string to be erased and then drawing the 
rectangle. This erasure must be done for each ani- 
mation frame since it is possible that each and every 
character might change and/or move from frame to 
frame. As a result, it is necessary to know the loca- 
tion of each character string from frame to frame and 
this must be done separately for each buffer (PING 
or PONG). Figure 15 illustrates this. To relieve the 
applications program from this bookkeeping task, the 
microcode has been written to handle it. 

If the autoclear erase function is used, there 
is no need for the AGG4 to erase any individual 
strings. However, if the selected area erase mode 
is used, any strings outside of the selected area 
must be erased. The AGG4 microcode has been 
written to handle the erase function automatically 
and this erase function may be enabled or disabled 
for individual strings. The contents and location 
of the character strings for each buffer (PING and 
PONG) which are to be erased must be saved when 
they are drawn so that they are available for erasing 
prior to drawing the next animation frame. The 
data transfer is illustrated in figure 16. During 
the generation of each animation frame, the new 
string data for the current animation frame and the 
old string data for the previous frame in the same 
buffer are passed from the scratch pad memory to 
the OBFM. These data transfers are indicated by 
the solid arrows which terminate at  the OBFM in 
figure 16. After the AGG4 is started, the BPS 
microcode transfers the current frame new string 
data to the old string data area in the scratch pad 
memory where it will be available for the next frame. 
This data transfer is indicated by the dashed arrow 
in figure 16 and relieves the applications program 

6 



from this bookkeeping task. For each succeeding 
animation frame the source of the old character string 
data for both of these transfers alternates between 
the PING and PONG storage areas in the figure. 

I 

Limitations of the New Microcode 
The increase in character drawing speed has its 

price. The zoom and rotation capabilities of the orig- 
inal character command were lost. This minor prob- 
lem was corrected by creating font tables with the 
character size and rotation built in. Three differ- 
ent character sizes were needed: 10 by 14, 20 by 28, 
and 32 by 32 pixels. The 14 and 28 pixel dimensions 
were in the vertical direction so that each font slice 
threw away 2 or 4 bits, respectively. To have made 
use of these unused bits by data compaction would 
have added a significant processing burden on the 
microcode with its attendant increase in processing 
time. The task of building the font table was sim- 
plified by creating several font editor programs on a 
personal computer which had the character size and 
rotation built in. The output format of these pro- 
grams was identical to the data entry format required 
by the RDS 3000. Several special symbols were cre- 
ated in the 32- by 32-pixel character set. They were 
the filled track ball and the numbers 1 and 2 with cir- 
cles around them found in the airspeed meter at  the 
upper left corner of the display (fig. 1). Also, several 
unused characters such as left and right parenthe- 
ses were used for the navigation aid symbols. Using 
characters for these symbols was faster than building 
them up from graphics primitives such as lines and 
circles. 

Character Draw Speed Measurements 
The time required to draw the different sized 

characters has been measured. The method used was 
to repeatedly draw a real-time frame containing a 
known number of characters. This program was run 
for 30 seconds and the time to draw a single character 
was computed as follows: 

Tf = Tto t IN  

where 

Tf  time per frame 

N number of frames 

Ttot 
and the time required to draw one character is 

measured time (normally 30 seconds) 

where 
Tch time per character 

Nch 
During this test, all synchronizing wait states 

were eliminated from the program to give a true time 
measurement. 

Table 1 shows the results of these timing mea- 
surements for the new microcode. Note that there is 
a time penalty when character strings are not posi- 
tioned vertically on 32 pixel boundaries. Also, there 
is a significant time penalty for the automatic erase 
function. If there are areas of the bit map image 
which are erased by use of the selected area erase 
function or if autoclear is used, then time may be 
saved by bypassing the character erase function. Ta- 
,ble 2 shows a comparison of character draw times 
between the new and original character commands. 
Note that vertical position on the screen has no effect 
on the speed of the original character command. 

number of characters per frame 

Concluding Remarks 
The problem of slow animation update rates has 

been resolved for the primary flight display of the Ad- 
vanced Concepts Simulator at  the Langley Research 
Center. The original update rate of 4 animation 
frames per second has been increased to 16 frames 
per second, which is as fast as the simulation pro- 
gram can currently run. This was accomplished by 
rewriting the character generator microcode to take 
better advantage of the hardware capabilities and by 
structuring the display program to take advantage 
of the parallel processing capabilities of the ADAGE 
RDS 3000 system. 

NASA Langley Research Center 
Hampton, VA 23665-5225 
February 6, 1989 

7 



Appendix 
Example of a Double-Buffered Display Program 

The program contained in this appendix is a double-buffered display (see fig. Al) utilizing all the 
techniques described in this paper. It is written in IDL2 and runs on the RDS 3000 utilizing the revised 
microcode. The update rate is 27 frames per second and the entire picture is drawn for each frame. 
The special symbols (filled circles and the circled 1 and 2) are single 32- by 32-pixel characters. The 
pattern-filled polygon is made up of eight 32- by 32-pixel characters (four for the boundary and four for 
the pattern fill). All characters change color: the special characters and the polygon change for each 
frame and the alphanumeric characters change once every 30 frames. The special characters and polygons 
move around inside the two boxes at  the bottom of the display. The three wheels rotate like a set of 
meshed gears and the selected area erase is used to erase the region containing the wheels by drawing 
in the background color. The BPS transforms and renders the wheels while the AGG4 is drawing the 
characters (see fig. 7). The color changes cycle through a set of 16 colors with the boundary and pattern 
fill of the polygon cycling separately. 

OF CHARACTERS AND SPECIAL SYRBOLS 
THE ANIMATION UPDATE RATE IS 27 FRAMES PER SEC 
AND THE ENTIRE PICTURE IS REDRAWN FOR EACH FRAHE 

THE CURRENT FRARE COUNT IS 0000 

Figure Al .  AGG4 demonstration display. 



, 
8 

8 

; 
; 
8 

; 
; 
; 
; 
; 

; 

; 
; 
; 

, 

, 

, 
, 
: 
; 
, 
; 
; 
, 
, 
; 
; 

; 
; 
; 
E Q = 1 .  
NE=2.  
L T = 3 .  
L E = 4 .  
GT=5. 
GE=6. 

, 

APPENDIX 1 

T H I S  I S  AN EXAHPLE OF A DOUBLE BUFFERED O I S P A L Y  WHICH 
WILL RUN ON THE ADAGE ROS 3000 U S I N G  THE M O O I F I E O  HICROCOOE 
WHICH I S  DESCRIBED I N  T H I S  PAPER. THE AGG4 P A R A L L E L  PROCESSOR 
IS USEO TO DRAW THE STANOARO AND S P E C I A L  CHARACTERS. THE S P E C I A L  
CHARACTERS I N C L U D E  THE F I L L E D  C I R C L E ,  THE C I R C L E D  NUMBERS 1 AN0 2 
AND A CROSS HATCHED POLYGON. THE POLYGON BOUNDARY I S  HADE UP 
OF 4 S P E C I A L  CHARACTERS AND THE I N T E R N A L  CROSS HATCHING I S  HADE 
UP OF 4 HORE. THE S P E C I A L  CHARACTER AN0 THE POLYGON HOVE AROUND 
I N S I D E  OF AND BOUNCE AGAINST THE S I D E S  OF TWO BOXES WHICH ARE DRAWN 
AT THE BOTTOH OF THE SCREEN. THE CHARACTER COMHANO I S  EXECUTED AT 
THE B E G I N N I N G  OF EACH A N I H A T I O N  FRAHE AND WHILE THE AGG4 I S  
RENDERING THE CHARACTERS, THE BPS AND H A 1 0 2 4  PROCESSORS ARE 
PERFORHING THE TRANSFORHATIONS FOR THE CHARACTER P O S I T I O N S  ON THE 
SCREEN AND THE TRANSFORMATION AND R E N D I T I O N  OF THREE WHEELS WHICH 
ARE LOCATED AT THE UPPER R I G H T  CORNER OF THE D I S P L A Y .  THE BPS AND 
H A 1 0 2 4  ARE PROCESSING I N  P A R A L L E L  W I T H  THE AGG4. ERASURE OF 
THE AREA C O N T A I N I N G  THE THREE WHEELS I S  ACCOMPLISHED BY DRAWING 

THE RECTANGLE F I L L  COHMANO HAS BEEN ENHANCED TO RUN 50 T I N E S  
FASTER THAN THE O R I G I N A L .  THE S P E C I A L  CHARACTERS CHANGE COLOR 
THROUGH A PRESCRIBED SEQUENCE OF COLORS FROM ONE A N I H A T I O N  FRAME 
TO THE NEXT.  THE POLYGON BOUNDARY GOES THROUGH ONE SEPUENCE 
OF COLORS WHILE THE CROSS HATCHING GOES THROUGH A SECOND. 
THE STANOARO CHARACTERS WHICH ARE F I X E 0  ON THE SCREEN CHANGE 
COLORS I N  A S I H I L A R  SEQUENCE AFTER EVERY 30 A N I H A T I O N  FRAHES. 
T H I S  WAS DONE TO GET A SMOOTHER T R A N S I T I O N  OF COLORS. 

a FILLED RECTANGLE IN THE BACKGROUND COLOR. THE HICROCOOE FOR 

D E F I N I T I O N S  OF COHMONLY USEO CONSTANTS. 

ANO=7. 
OR=8. 
X O R = S .  
NANO=10. 
N O R = l l  . 
XNOR=12. 
X 3 0 = 0 .  
X 3 D P = l .  
X3OC=2. 
X 3 0 2 = 3 .  
X3OP2=4.  
COLOR=377 
ORAW=100000  
R E D = " X l l  
GREEN=^X22 
BLUE=^X33  
YELLOW="X44 
P I N K = " X 5 5  
WHITE=^X66  
BLACK="XOO 
E O L = 4 0 0 0 0  
C H X E = A 0 2 0 3 \ ^ 0 2 0 0 0  
D E L T A = 3 .  

9 



OELTAH=-3.  
Luv0=^0203\"00 
A M B E R 3 2 = ^ X 3 3 3 3 \ ^ X 3 3 3 3  
PING=^XO\^XOOOF 
PONG=^XO\^XOOFO 

, D E F I N E  CHARACTER S I Z E  CODES 
; 
S T 0 = 2 0 0 0  ;STANDARD S I Z E  10 X 1 4  
W I 0 = 4 0 0 0  ;DOUBLE S I Z E  20 X 28 
S P C = 6 0 0 0  ; S P E C I A L  CHARACTERS 32 X 32 
NOERASE=10000  ;TAG F I E L D  B I T  FOR NO ERASE O F  CHARACTER 

, 

; T H I S  I S  NOT USE0 I N  T H I S  EXAMPLE PROGRAM 
;OBF MEMORY 

I N I T  #l 
RESOLU #l 

MOVE # O ,  100\10020 
MOVE #O,CHXB 

; I N I T I A L L Y  CLEAR AGG4 BUSY B I T  
;SET THE CHANNEL X BAR TO REO 

, 
, 

I , 

I N I T I A L I Z E  THE X AND Y INCREMENT VALUES. THESE WILL INCREMENT 
THE P O S I T I O N  OF THE MOVING S P E C I A L  CHARACTERS ON THE SCREEN 

HOVE 
MOVE 
MOVE 
HOVE 
MOVE 
MOVE 
HOVE 
MOVE 
HOVE 
HOVE 
MOVE 
HOVE 
HOVE 
MOVE 
HOVE 
HOVE 
HOVE 
MOVE 
MOVE 
MOVE 
HOVE 
HOVE 

#DELTA, O E L X l  
# D E L T A H \ O , O E L Y l  
#DELTA,  D E L X 2  
#DELTAM\O, OELY2 
#DELTA, OELX3 
#DELTAH\O,DELY3 
#DELTAH, D E L X 4  
#OELTAH\O,  D E L Y 4  
#DELTA, OELXS 
#OELTA\O,  DELYS 
#DELTA, D E L X 6  
#OELTAH\O,  D E L Y 6  
#DELTA, OELX7 
#OELTA\O,  OELY7 
#DELTA, DELXB 
#DELTAM\O, DELYB 
#DELTAM, DELXS 
#DELTAH\O,DELYS 
#DELTA, D E L X l O  
#OELTAH\O,OELY lO 
#DELTA, O E L X l l  
# D E L T A \ O , D E L Y l l  

DRAW THE BOUNDARY BOXES FOR THE BOUNCING THINGS 

WHASK # 0 \ 4 0 0  ;WRITE MASK FOR S T A T I C  B I T  PLANE 
;WHICH CONTAINS THE BOUNCING T H I N G  
;BOUNDARIES 

VECT V L B 0 U N C E ;DRAW THE BOX 

HOVE #PING,PINGPONG ; I N I T I A L I Z E  PINGPONG TO # P I N G  
, 
, P I N G  BUFFER I S  B I T  PLANES 0 - 3 
; PONG BUFFER I S  B I T  PLANES 4 - 7 
, S T A T I C  BUFFER I S  B I T  PLANE B AND CONTAINS 
; THE BOUNDARY BOX FOR THE BOUNCING THINGS 

, L O A 0  THE SHADE TABLE WITH SOME COLORS I N  THE F I R S T  17  LOCATIONS; 
, 

I 10 



CMAPLO SHADE, #0, #77777\0, LUVO, #256. 
, 
; 

; 
; 

LOOP : 

; 

, 

, 

, 

, 
, 

, 
; 
; 

, 
; 

; 
; 
; 

, 

L O C A T I O N  "LOOP" DENOTES THE START OF THE NEW A N I M A T I O N  FRAME 
COMPUTATIONS 

SET UP THE AGG4 TO DRAW ALL CHARACTERS AT THE B E G I N N I N G  OF 
EACH FRAME 

JMPC DPONGCH, PINGPONG, #EQ, #PONG 

DRAW CHARACTERS I N  P I N G  BUFFER 

CHAR C O O R l ~ N E W , S T R A O l ~ N E W , A T T A O l , O V L P I N G , O S T R P I N G , P I N G P O N G  

FROM HERE ON THE BPS I S  PROCESSING VECTORS WHILE THE AGG4 I S  
SIMULTANEOUSLY PROCESSING CHARACTERS 

TRANSFORM THE VECTORS FOR THE R O T A T I N G  WHEELS 

SUB 
SUB 
ADO 
COEFF 
XFORM 
COEFF 
XFORM 
COEFF 

R O T 1 + 2 , # 1 7 7 7 \ 0 , R O T 1 + 2  

#1777 \O,ROT3+2 ,ROT3+2  
10, #0, # O ,  R O T l ,  TRAN1, S C A L E l  
V L l ,  VL2, no, #x30 
ti, #o, $10, ROT2, TRAN2, S C A L E 2  
VL1, VL4,  #l, rX30 
$11, #0, #0, ROT3, TRAN3, S C A L E 3  

ROT2+2,  #1777\0, R O T 2 + 2  

XFORM V L l ,  VL6, #l, #X30 
SENDERID #l 
WMASK #0\17 
F I L R E C  R E C L I S T  

VECT VL2 
VECT V L 4  
VECT V L 6  
JMP LOOPC 

OPONGCH : 
; 
, DRAW CHARACTERS I N  PONG 
, 

;ERASE THE REGION WHERE THE 
;WHEELS ARE DRAWN BY DRAWING 
;A RECTANGLE I N  THE BACKGROUND 
;COLOR U S I N G  THE NEW H I G H  SPEED 
; F I L R E C  COMMAND 
;DRAW THE NEW VERSION OF THE WHEELS 

BUFFER 

CHAR C O O R l ~ N E W , S T R A O l ~ N E W , A T T A O l , O V L P O N G , O S T R P O N G , P I N G P O N G  
, 
, TRANSFORM THE VECTORS FOR THE R O T A T I N G  WHEELS 
, 

SUB ROT1+2, #1777\0, ROT1+2 
SUB ROT2+2, #1777\0, ROT2+2 
ADD #1777\0, ROT3+2,  ROT3+2 
COEFF 
XFORM VLl, VL2,  #O, # X 3 D  
COEFF 
XFDRM V L l ,  VL4,  #l, #X30 
COEFF 
XFORM V L l ,  VL6,  ti, # X 3 D  

# O ,  # O , # O ,  R O T l ,  T R A N l ,  S C A L E 1  

e l ,  # O ,  #O, ROT2, TRAN2, S C A L E 2  

#1, # O ,  #0, ROT3, TRAN3, S C A L E 3  

11 



SENDERID #1 
WHASK #0 \360 
F I L R E C  R E C L I S T  ;ERASE THE REGION WHERE THE 

;WHEELS ARE DRAWN BY DRAWING 
;A RECTANGLE I N  THE BACKGROUND 
;COLOR U S I N G  THE NEW H I G H  SPEED 
; F I L R E C  COMMAND 

VECT V L 2  ;DRAW THE NEW VERSION OF THE WHEELS 
VECT V L 4  
VECT VL6 

LODPC : 

, 

, 

I N C P L :  

, 

; 

; 
; 

I 

, 
, 
, 
; 
, 
; 
, 
, 
, 
; 

INCREMENT FRAME COUNTER D I S P L A Y  

ADD 
JMPC 
MOVE 
ADD 
JHPC 
MOVE 
ADD 
JHPC 

HOVE 
HOVE 
MOVE 
GTABLE 
S H I F T  
GTABLE 
S H I F T  
GTABLE 
S H I F T  

13, X i ,  I 3  ; INCREMENT U N I T S  
I N C P L ,  13, # L T ,  # I O .  
#0, I 3  
12, r1, I 2  ; INCREMENT TENS 
I N C P L ,  12, #LT,  # l o .  
#O, I 2  
11, #l, 11 ; INCREMENT HUNDREDS 
I N C P L ,  11, #LT,  # l o .  

RESET ALL D I G I T S  TO ZERO I F  LAST COUNT WAS 999 

#O, I 3  
#O, I 2  
# O ,  I1  
GS1, D I G I T ,  I 1  
G S l ,  #E., G S l  
GS2, D I G I T ,  I 2  
GS2, #16., GS2 
GS3, D I G I T ,  I 3  
GS3, # 2 4 . ,  GS3 

UPDATE THE S T R I N G  FOR THE FRAME COUNTER 

MOVE #40,  S T R 2 2  
OR G S l ,  STR22,  S T R 2 2  
OR GS2, STR22,  S T R 2 2  
OR GS3, STR22,  S T R 2 2  

FRAME COUNTER UPDATE COMPLETE 

UPDATE THE NEW BUFFER 

UPDATE M I D  S I Z E  AN0 STANDARD S I Z E  CHAR COLORS 

SOME OF THE S T R I N G S  HOVE AND CHANGE COLORS AT THE SAME T I H E  
THEY WILL B E  UPDATED F I R S T  START THE CHANGES FOR THESE 
S T R I N G S  BY U P D A T I N G  C D D R l  THROUGH COORlB 

SET THE HAXIHUM AND M I N I M U M  VALUES FOR THE BOUNCING B Q L L S  

HOVE #50D. ,  X H I N  
HOVE #Ego. ,  XHAX 

12 



HOVE #535. \O, Y H I N  
HOVE #925. \O, YHAX 

NOW 00 THE INCREMENTS AND C O L O R  CHANGES TO THESE S T R I N G S  

HOVE 
HOVE 
HOVE 
JHPSUB 
HOVE 
HOVE 
MOVE 
JHPSUB 
HOVE 
HOVE 
HOVE 
JHPSUB 
HOVE 
HOVE 
HOVE 
JHPSUB 
HOVE 
HOVE 
HOVE 
JHPSUB 

#COORl,  R E G l  
# D E L X l ,  REG2 
#DELY 1, REG3 
CHANGE 
#COOR2, R E G l  
#OELX2,  REG2 
r(OELY2, REG3 
CHANGE 
#CDOR3, R E G l  
#DELX3,  REG2 
#OELY3,  REG3 
CHANGE 
rCOOR4, R E G l  
xOELX4,  REG2 
#DELY4,  REG3 
CHANGE 
#COOR5, R E G l  
#DELXS, REG2 
r D E L Y 5 ,  REG3 
CHANGE 

SET THE H A X I H U H  AND N I N I H U H  VALUES FOR THE BOUNCING S P E C I A L  
CHARACTERS " C I R C L E D  1 AND C I R C L E D  2" 

HOVE #500., X H I N  
HOVE #903., XHAX 
HOVE #522. \O, Y H I N  
HOVE #925. \O, YHAX 

HOVE 
HOVE 
HOVE 
JHPSUB 
HOVE 
HOVE 
HOVE 
JHPSUB 
HOVE 
HOVE 
HOVE 
JHPSUB 
HOVE 
HOVE 
HOVE 
JHPSUB 
HOVE 
HOVE 
HOVE 
JHPSUB 

#COOR6, R E G l  
#DELX6,  REG2 
#OELY6,  REG3 
CHANGE 
#COOR7, R E G l  
#DELX7,  REG2 
#DELY7,  REG3 
CHANGE 
#COORE, R E G l  
#DELXB, REG2 
#DELYB, REG3 
CHANGE 
#COOR9, R E G l  
( tDELX9, REG2 
rtDELY9, REG3 
CHANGE 
#COORlO, R E G l  
# D E L X l O ,  REG2 
# O E L Y l O ,  REG3 
CHANGE 

NOW CHANGE THOSE STATIONARY S T R I N G S  WHICH ONLY CHANGE COLOR 
AND ONLY DO I T  AFTER EVERY 30 FRAMES HAVE BEEN DRAWN 

ADD ai, FCT, FCT 
JHPC NOCOLUPD, FCT, #NE, # 3 O .  

13 



HOVE 
HOVE 
JMPSUB 
MOVE 
JHPSUB 
MOVE 
JHPSUB 
MOVE 
JHPSUB 
HOVE 
JHPSUB 
MOVE 
JHPSUB 
MOVE 
JHPSUB 
HOVE 
JHPSUB 
HOVE 
JHPSUB 
MOVE 
JHPSUB 
MOVE 
JHPSUB 
HOVE 
JHPSUB 

NOCOLUPO: 

# O ,  F C T  
#COORLl,  R E G l  
CHGCOL 
#COORL2, R E G l  
CHGCOL 
#COORL3, R E G l  
CHGCOL 
rCOORL4, R E G l  
CHGCOL 
#COORL5, R E G l  
CHGCOL 
rtCOORL6, R E G l  
CHGCOL 
#COORL7, R E G l  
CHGCOL 
#COORLB, R E G l  
CHGCOL 
#COORLS, R E G l  
CHGCOL 
#COORL10, R E G l  
CHGCOL 
# C O O R L l l ,  R E G l  
CHGCOL 
#COORL12, R E G l  
CHGCOL 

, 
, 
; 
; 

, 
, 

, 
, 
, 

, 
I 

, 
, 
, 
; 

14 

UPDATE THE COLOR AND COORDINATES 
OF THE S P E C I A L  CHARACTERS WHICH H A K E  UP THE 
POLYGON T H I S  I S  DONE EVERY FRAME 

S E T  THE MAXIMUM AND M I N I M U M  VALUES FOR THE POLYGON F ILL  AND 
POLYGON BOUNDARY 

MOVE #500., X H I N  
HOVE #865. ,  XHAX 
HOVE # 6 0 .  \O, Y M I N  
HOVE #500. \O, YHAX 

NOW UPDATE I T  

HOVE 
MOVE 
HOVE 
JHPSUB 
HOVE 
JHPSUB 
HOVE 
MOVE 
HOVE 
MOVE 
HOVE 
HOVE 

# C O O R l l ,  R E G l  
# D E L X l l ,  REG2 
#DELY 11, REG3 
CHANGE ;CHANGE COLOR AND COORDINATE 
#COOR15, R E G l  
CHGCOL ;CHANGE ONLY THE COLOR 
C O O R l l + l , C O O R 1 2 + 1  
C O D R l l + l , C O O R l 3 + 1  
C O O R l l + l ,  COOR14+1 
C O O R l 5 + 1 , C O O R l 6 + 1  
C O O R l 5 + 1 , C O O R l 7 + 1  
COOR15+l,COOR1B+1 

UPDATE THE COORD OF THE S P E C I A L  SYMBOLS WHICH HAKE UP 
CROSS HATCHED POLYGON B Y  A D D I N G  OR SUBTRACTING THE A P P R O P R I A T E  
CONSTANTS TO C O O R l l  X AND Y COMP 

ADD COORl l ,# -32 . \O. ,COOR12 



ADD C O O R I I ,  #O. \32., COOR13 
ADD C O O R l l , # - 3 2 . \ 3 2 . , C 0 0 R 1 4  

, 
; 
; 
LOOP 1 : 

D U P L I C A T E  THE COORDINATES OF THE POLYGON CROSSHATCH F I L L  
BY COPYING THE CORRESPDNOING COORDINATES OF THE S P E C I A L  
CHARACTERS WHICH HAKE UP THE POLYGON BOUNDARY 

MOVE C O O R l l ,  COOR15 
MOVE COOR12, COOR16 
HOVE COORl3,  C O O R I 7  
HOVE COOR14, COORlE 

CHANGE THE CROSSBAR SWITCH 

JHPC OPONG, PINGPONG, #Ea,  #PONG 
ADO # O \ l ,  COUNT, COUNT 
HOVE #PONG, PINGPONG 
W A I T B  
BLKHOVE PINGTB,  302\0, # 3 4 .  ;SET XBAR TO D I S P L A Y  P I N G  
JHP LOOP ;GO BACK TO "LOOP" TO START 

;THE NEXT A N I M R T I O N  FRAHE 
OPONG : 

ADO #l, COUNT, COUNT 
MOVE #PING, PINGPONG 
WRITE 
BLKMOVE PONGTB, 302\0, # 3 4 .  ;SET XBAR TO D I S P L A Y  PONG 
JHP LOOP ;GO BACK TO "LOOP" TO START 

;THE NEXT A N I M A T I O N  FRAME 
, 
; 
CHANGE : 

; 
; 

, 

P X I  : 

P Y l :  

P Y 2 :  

P F I N l  : 

T H I S  SUBROUTINE INCREHENTS COORDINATES AND CHANGES COLOR 

T H I S  I S  THE ENTRY P O I N T  TO CHANGE COORDINATES AN0 COLORS BOTH 
F I R S T  INCREHENT THE COORDINATE AS P O I N T E D  TO BY R E G l  

MOVE @REG2, OELX 
MOVE BREG3, OELY 
AND BREGI,  #0\177777, T E H P l  
AND B R E G l , # 1 7 7 7 7 7 \ O , T E H P 2  

INCREMENT THE COORDINATES 

; T E H P l  HAS THE X COORO 
; T E H P l  HAS THE Y COORO 

JHPC 
HOVE 
JHP 
JHPC 
MOVE 
JHPC 
HOVE 
JHP 
JMPC 
MOVE 
ADO 
ADO 

PX1, T E M P I ,  #LT,  X H A X  ;TEST FOR nAxInun x 
#OELTAH, DEL% 
P Y l  
P Y I ,  T E H P l ,  #GT, X H I N  ;TEST FOR H I N I H U H  X 
#DELTA, DELX 
PY2, TEHP2, QLT, YMAX ;TEST FOR MAXIHUH Y 
#OELTAf l \O,  DELY 
P F I N l  
P F I N l ,  TEMPZ, #GT, Y M I N  ;TEST FOR H I N I H U M  Y 
#OELTA\O, OELY 
OELX, TEMP1, T E H P l  
OELY, TEHPZ, TEMP2 

INCREHENT COHPLETE 

OR TEMPI,  TEMPZ, @REG1 
HOVE OELX, @REG2 
HOVE OELY, @REG3 

INCREHENT R E G l  TO P O I N T  TO THE SHADE L O C A T I O N  

15 



, 
CHGCOL : 
, 
, 
, 

, 
, 

COLA : 

COLE : 

; 

, 
, 
, 

T H I S  I S  THE ENTRY P O I N T  TO ONLY CHANGE COLOR 

ADD #1, R E G l ,  R E G l  

NOW INCREHENT THE COLOR AS P O I N T E D  TO BY REG1 

AND 
AND 
ADD 
AND 
JHPC 
MOVE 
ADD 
AND 
JHPC 
MOVE 

I R E G l ,  #17\0, T E H P l  
@REGl ,  #360\0, TEHP2 
TEMPI,  # l \ O ,  T E H P l  
T E H P l ,  #17\0, T E M P l  
COLA, TEHP1, #NE, 1 0  
#l\O, T E M P l  
TEHP2, #20\0, TEMP2 
TEMP2, #360\0, TEMP2 
COLB, TEMP2, #NE, # O  
#20\0, TEMP2 

OR TEMPI ,  TEHPZ, TEMP3 
AND @ R E G l , # 1 7 7 4 0 0 \ O , @ R E G l  
OR TEHP3, @ R E G l ,  @REG1 
RETURN 

.SETORG ^ 0 2 0 2 \ ^ 0 7 0 0 0  

; I S O L A T E  P I N G  COLOR 
; I S O L A T E  PONG COLOR 

; T H I S  I S  THE COORDINATE L I S T  FOR THE NEW A N I M A T I O N  FRAME CHARACTER BUFFER 
; 
COORl-NEW: 
; 
, 
, 
COORl : 

COOR2 : 

COOR3 : 

COOR4 : 

COOR5 : 

COOR6 : 

COOR7 : 

COORB : 

COORS : 

C O O R l 0 :  

, 
; 
; 
C O O R l l  : 

16 

NEW COORDINATES FOR BOUNCING B A L L S  AND C I R C L E D  1 AND 2 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

900.\816. 
[ R E D I S P C I \ O  
850. \620. 
[ G R E E N I S P C I \ O  
800. \652. 
( E L U E I S P C I \ O  
750. \ 6 B 4 .  
[ Y E L L O W I S P C l \ O  
700.\716. 
L P I N K I S P C I \ O  
650. \ 7 4 8 .  
[ W H I T E I S P C I \ O  
600. \ B 1 2 .  
[ P I N K I S P C I \ O  
550. \ B 2 0 .  
( Y E L L O W I S P C l \ O  
800. \ B 2 B .  
L Y E L L O W I S P C I \ O  
700. \ B 2 7 .  
[ G R E E N I S P C I \ O  

NEW COORDINATES FOR CROSS HATCHED POLYGON 

. WORD 232. \800. 



.WORD 
COOR12: .WORD 

.WORD 
CODR13: .WORD 

.WORD 
CODR14: .WORD 

.WORD 
CDOR15: .WORD 

.WORD 
COOR16: .WORD 

.WORD 
COOR17: .WORD 

.WORD 
CODRlB: .WORD 

.WORD 
, 

[GREENISPCl\O 
200. \800. 
[GREENISPCl\O 
232. \832. 
[GREENISPCI\D 
200. \832. 
[GREENISPCI\O 
232. \800. 
(WHITEISPCI\O 
200. \800. 
[WHITEISPCI\O 
232. \832. 
[WHITEISPCl\O 
200. \832. 
[WHITEISPCl\O 

, NEW COORDINATES FOR THE WIDE CHARACTERS 

CDORLI: .WORD 1000.\32. 

CODRL2: .WORD 840.\32. 

CODRL3: .WORD 500.\32. 

COORL4: .WORD 1000.\64. 

CODRLS: .WORD 1000.\96. 

CDDRL6: .WORD 1000.\128. 

, 

.WORD LREDIWIDl\O 

.WORD LWHITEIWIDl\O 

.WORD LYELLOWIWIDl\O 

.WORD LWHITEIWID)\O 

.WORD [BLUEIWIDl\O 

.WORD [REOIWID)\O 
, 
, NEW COORDINATES FOR THE FRAHE COUNTER AND ITS HEADER 

CODRL7: .WORD 1000.\340. 

CODRL8: .WORD 650.\340. ;LOCATION OF COUNTER 

, 

.WORD [BLUEISTDl\O 

.WORD IREOIWIDl\O 
, 
, NEW COORDINATES FOR STD CHARS 

CODRLS : .WORD 1000.\160. 

COORL10: .WORD 900.\192. 

CDORLll: .WORD 1000.\224. 

CDDRLl2: .WORD 1000.\256. 

, 

.WORD (WHITEISTOl\O 

.WORD IGREENISTDI\O 

.WORD [YELLDWISTD)\O 

.WORD [REOISTDIEDLl\O 
, 

; THIS IS THE OLD COORDINATE LIST FOR ERASING THE CHARACTERS 
, IN THE PING BUFFER FOR THE PREVIOUS ANIMATION FRAME 
, IT I S  INITIALLY THE SAME AS THE NEW BUFFER 

, OLD PING BUFFER COORDINATES FOR BOUNCING BALLS 
, AND CIRCLED 1 AND 2 
DVLP ING : 

, 

.WORD 900. \816. 

.WORD [REDISPCI\O 

.WORD 850. \62O. 

.WORD [GREENISPCl\O 

17 



.WORD 

.WORD 

.WORD 

.WORD 

.WORD . WORO 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

800. \652. 
L BLUE I S P C  I \O 
750. \6B4. 
[YELLOWISPCI\O 
700. \716. 
[PINKISPCI\O 
650. \748 .  
[WHITEISPCI\O 
600. \912. 
[PINKISPCl\O 
550. \920. 
[YELLDWISPCI\O 
500.\928. 
[BLUEISPCI\O 
450. \927. 
[GREENISPCl\O 

* 
, 

I 

I 
, 
, 

, 
, 

I ; 

, 
, 
, 

OLD PING BUFFER COORDINATES FOR CROSS HATCHED POLYGON 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

. WDRO 

232. \800. 
[GREENISPCl\O 
200. \800. 
LGREENISPCI\O 
232. \832. 
[GREENISPCI\O 

[GREENISPCI\O 
232. \000. 
LWHITEISPCI\O 
200.  \BOO. 
[WHITEISPCl\O 
232. \832. 
(WHITEISPCI\O 
200. \832. 
[WHITEISPCI\O 

2 0 0 .  \ a x .  

OLD PING BUFFER COORDINATES FOR THE WIDE CHARACTERS 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD . WORO 

.WORD 

.WORD 

.WORD 

1000. \32. 
[REDIWIDI\O 
840 .  \32. 
(WHITEIWIDI\O 
500. \32. 
(YELLOWIWID)\O 
1000. \64. 
LWHITEIWIDI\O 
1000. \96. 
[BLUEIWIOl\O 
1000.\128. 
LREDIWIOI\O 

OLO PING BUFFER COORDINATES FOR LAST TWO ROWS OF LARGE CHARACTERS 

.WORD 1000.\288. 

.WORD IBLUEISTOI\O 

.WORD 800. \340 .  ;LOCATION OF COUNTER 

.WORD [REDIWIDl\O 

OLD PING BUFFER COOROINATES FOR STD CHARS 

.WORD 1000.\160. 



.WORD [ W H I T E I S T D ) \ O  

.WORD 900. \192.  

.WORD [ G R E E N I S T D ) \ O  

.WORD 1000. \224.  

.WORD ( Y E L L O W I S T D ) \ O  

.WORD 1000. \256.  

.WORD [ R E D I S T D I E O L I \ O  
8 

, T H I S  I S  THE OLD COORDINATE L I S T  FOR ERASING THE CHARACTERS 
; I N  THE PONG BUFFER FOR THE PREVIOUS A N I N A T I D N  FRAME 
, I T  I S  I N I T I A L L Y  THE SAME AS THE NEW BUFFER 
; 
; OLD PDNG BUFFER COORDINATES FOR BOUNCING B A L L S  AND 
, C I R C L E D  1 AND 2 
OVLPONG : 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WDRO 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

900. \816.  
[ R E D I S P C l \ O  
850. \620. 
I G R E E N I S P C I \ O  
BOO. \ 6 5 2 .  
[ B L U E I S P C I \ O  
750. \684.  
[ Y E L L O W I S P C I \ O  
700. \716.  
[ P I N K I S P C ) \ O  
650. \748.  
[ W H I T E I S P C l \ O  
600. \912.  
[ P I N K I S P C ) \ O  
550. \92O. 
[ Y E L L O W I S P C I \ O  
500. \928.  
[ B L U E I S P C ) \ O  
450. \927.  
[ G R E E N I S P C ) \ O  

OLD PDNG BUFFER COORDINATES FOR CROSS HATCHED POLYGON 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 
, 

232. \800. 
[ G R E E N I S P C I \ O  
200. \ B O O .  
( G R E E N I S P C I \ O  
232. \832. 
( G R E E N I S P C l \ O  
200. \832. 
I G R E E N I S P C ) \ O  
232. \BOO. 
[ W H I T E I S P C I \ O  
200. \80O. 
[ W H I T E I S P C I \ O  
232. \ B 3 2 .  
[ W H I T E I S P C l \ O  
200. \832. 
( W H I T E I S P C I \ O  

; OLD PONG BUFFER COORDINATES FOR THE WIDE CHARACTERS 
, 

.WORD 1000. \32. 

.WORD ( R E D I W I D I \ O  . WORD 840.  \32. 

.WORD [ W H I T E I W I D ) \ O  

19 



.WORD 500. \32. 

.WORD [ Y E L L O W I W I D I \ O  

.WORD 1000. \64.  

.WORD [ W H I T E I W I D I \ O  

.WORD 1000. \96. 

.WORD [ B L U E I W I D l \ O  

.WORD l O O O . \ l Z B .  

.WORD [ R E D I W I D I \ O  

OLD PONG BUFFER COORDINATES FOR L A S T  TWO ROWS OF LARGE CHARACTERS 

.WORD 1 0 0 O . \ Z B 8 .  

.WORD L B L U E I S T D l \ O  

.WORD BOO. \340.  ;LOCATION OF COUNTER 

.WORD I R E D I W I D l \ O  
, 
, OLD PONG BUFFER 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD . WORO 

I S T R I N G  P O I N T E R S  

STRAO1-NEW: 

COORDINATES FOR S T D  CHARS 

1000.\160. 
L W H I T E I S T D I \ O  
900. \192. 
I G R E E N I S T O I \ O  
1000.\224. 
L Y E L L O W I S T D I \ O  
1000.\256. 
( R E O I S T D I E O L l \ O  

FOR THE S P E C I A L  SYHBOLS AND POLYGON 

S T R A 0 2  : 

STRAD3: 
, 
, 

S T A D L l  : 
, 

, 
STADLZ : 

, 

, 

.WORD S T R I O ,  STR10,  STR10,  STR10,  S T R l O  

.WORD STRll,STRll,STR11,STRlZ,STRlZ 

.WORD STR13,  STR14,  S T R l 5 ,  STR16,  S T R l 7 ,  S T R l B ,  STR19,  STRZO 

S T R I N G  P O I N T E R  FOR F I R S T  3 ROWS OF LARGE CHARACTERS 

.WORD STR1, STR2, STR3, STR4, STRS, STR6, STR21,  S T R 2 2  

S T R I N G  P O I N T E R  FOR THE FOUR ROWS OF STANDARD S I Z E  CHARACTERS 

.WORD STR7, STR8, STRS, STRA 

S T R I N G  POINTERS FOR OLD S T R I N G S  P I N G  BUFFER 

T H I S  IS THE OLD S T R I N G  P O I N T E R  L I S T  FOR ERASING THE CHARACTERS 
I N  THE P I N G  BUFFER FOR THE PREVIOUS A N I H A T I O N  FRAME 
I T  IS I N I T I A L L Y  THE SAME AS THE NEW BUFFER 

OSTRPING:  
.WORD S T R l O ,  S T R 1 0 ,  STRIO,  S T R l O ,  S T R l O  
.WORD STRll,STR1l,STRll,STRlZ,STRlZ 
.WORD S T R l 3 ,  STR14,  S T R l S ,  STR16,  S T R l 7 ,  STR18,  STR19,  S T R 2 0  ' 

, 
, S T R I N G  P O I N T E R  FOR F I R S T  3 ROWS OF LARGE CHARACTERS 

.WORD 

S T R I N G  P O I N T E R  FOR THE FOUR ROWS OF STANDARD S I Z E  CHARACTERS 

.WORD STR7, STRE, STRS, STRA 

S T R l ,  STR2, STR3, STR4, STR5, STR6, STRZ1, STRZZ 

, 

20 



, 
8 T H I S  I S  THE OLD S T R I N G  POINTER L I S T  FOR ERASING THE CHARACTERS 
; I N  THE PONG BUFFER FOR THE PREVIOUS A N I M A T I O N  FRAME 
; I T  I S  I N I T I A L L Y  THE SAME A S  THE NEW BUFFER 

OSTRPONG: 
.WORD STRIO,  STRIO,  STRIO,  STRIO,  S T R l O  
.WORD S T R l l ,  S T R l l , S T R l l , S T R 1 2 , S T R l 2  
.WORD S T R l 3 ,  S T R l 4 ,  S T R I S ,  S T R l 6 ,  STR17 ,  S T R I B ,  STR19,  STRZO 

8 

, S T R I N G  POINTER FOR F I R S T  3 ROWS OF LARGE CHARACTERS 
; 

; 
; S T R I N G  POINTER FOR THE FOUR ROWS OF STANDARD S I Z E  CHARACTERS 

.WORD S T R I ,  STRZ, STR3, STR4,  STR5, STR6, S T R Z I ,  S T R 2 2  

, . WORO STR7, STR8, STRS, STRA 
; 
; S T R I N G S  F O R  S P E C I A L  SYMBOLS T H I S  I S  THE SAME FOR BOTH BUFFERS 

S T R I O :  .BYTE 'A',O 
S T R l l :  .BYTE 'B',O 
S T R I Z :  .BYTE ' C ' , O  
; 
; STRINGS FOR CROSS HATCHED POLYGON 

S T R 1 3 :  .BYTE ' O ' , O  
S T R l 4 :  .BYTE 'E',O 
S T R 1 5 :  .BYTE 'F',O 
S T R l 6 :  .BYTE ' G ' , O  
S T R l 7 :  .BYTE 'H',O 
S T R I B :  .BYTE ' I ' , O  
S T R l 5 :  .BYTE ' J ' , O  
S T R 2 0 :  .BYTE ' K ' , O  

, 

8 

, 
; 

S T R l :  
STRZ : 
STR3 : 
STR4 : 
S T R 5  : 
S T R 6  : 

, 

, 
2 
STR7 : 
STRB : 
STRS : 
STRA: 

, 
, 

STRINGS FOR F I R S T  3 ROWS OF LARGE CHARACTERS 

.BYTE ' T H I S  I S  ',0 

.BYTE 'A  DEMONSTRATION ',0 

.BYTE ' O F ' , O  

.BYTE 'REAL T I M E  ANIMATED OISPLAY ' ,O  

.BYTE ' GENERATION ON THE ',0 

.BYTE ' ADAGE ROS 3000 ',0 

S T R I N G S  F O R  THE FOUR ROWS OF STANDARD S I Z E  CHARACTERS 

.BYTE 'USING THE AGG4 COPROCESSOR FOR H I G H  SPEEO GENERATION',O 

.BYTE 'OF CHARACTERS AN0 S P E C I A L  SYMBOLS ',0 

.BYTE 'THE A N I M A T I O N  UPDATE RATE I S  27 FRAMES PER SEC',O 

.BYTE 'AND THE E N T I R E  P I C T U R E  I S  REDRAWN FOR EACH FRAME',O 

STRINGS F O R  THE L A S T  TWO ROWS OF LARGE CHARACTERS 

S T R Z l :  .BYTE 'THE CURRENT FRAME COUNT I S ' , O  
S T R 2 2 :  .BYTE 'OOOO',O 
; 
; CROSSBAR S E T T I N G S  FOR P I N G  BUFFER 

P I N G T B :  .WORD O , l ,  2,3,10,77,77,77 
, 

.WORD 7 7 , 7 7 , 7 7 , 7 7 , 7 7 , 7 7 , 7 7 , 7 7  . WORO 77,77,77,77,77,77,77,77 

21 



.WORD 77,77,77,77,77,77,77,77 

.WORD 77,77 

; CROSSBAR S E T T I N G S  FOR PDNG BUFFER 

PONGTB: .WORD 4,5,6,7,10,77,77,77 
, 

.WORD 77,77,77,77,77,77,77,77 

.WORD 77,77,77,77,77,77,77,77 

.WORD 77,77,77,77,77,77,77,77 

.WORD 77,77 

, STORAGE FOR FRAME COUNTER D I G I T S  
, 
D I G I T :  .BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE . B Y T E  

.BYTE 

.BYTE 
GS1:  .WORD 
GS2 : .WORD 
GS3 : .WORD 
GS4 : .WORD 
11: .WORD 
12: .WORD 
13: .WORD 
I 4  : .WORD 
IC: .WORD 
I N C T :  .WORD 
ZERD : .WORD 
T E M P I :  .WORD 
TEMPZ: .WORD 
TEMP3: .WORD 
F C T  : .WORD 
I C T  : .WORD 
PINGPONG: 
DELX : .WORD 
DELY:  .WORD 
DELX1:  .WORD 
DELY1:  .WORD 
OELX2:  .WORD 
OELY2:  .WORD 
D E L X 3 :  .WORD 
DELY3:  .WORD 
D E L X 4 :  .WORD 
D E L Y 4 :  .WORD 
D E L X 5 :  .WORD 
DELYS:  .WORD 
DELX6:  .WORD 
OELY6:  .WORD 
DELX7:  .WORD 
DELY7:  .WORD 
DELXB:  .WORD 
DELYB:  .WORD 
DELXS:  .WORD 
DELYS:  .WORD 
D E L X l O :  .WORD 

i 

’O’, o,o, 0 
’1’,0,0,0 
‘2’, o,o, 0 
’3’, O,O, 0 
‘4‘, O,O, 0 
‘5’, O , O ,  0 
’6‘, O,O, 0 
‘7‘, O,O, 0 
‘a’, o,o, 0 
‘S’, o,o, 0 
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
.WORD O \ O  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
O \ D  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  



D E L Y l O :  .WORD 
D E L X l l :  .WORD 
D E L Y 1 1 :  .WORD 
D E L  : .WORD 
D E L 2  : .WORD 
D E L 3  : .WORD 
D E L 4  : . WDRO 
D E L 5  : .WORD 
D E L 6  : .WORD 
D E L 7  : .WORD 
DELE:  .WORD 
D E L 9  : .WORD 
D E L l O :  .WORD 
T E S T l :  .WURD 
T S T l :  .WORD 
X M I N :  .WORD 
XMAX : .WORD 
Y H I N :  .WORD 
YMAX : .WORD 
, 

O \ D  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
O \ D  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  
o \ o  

, T A B L E S  OF ROTATION,  TRANSLATION AND S C A L I N G  FOR THE 
, TRANSFORMATIONS 
; 
R O T 1  : .WORD 

.WORD 

.WORD 
TRAN1: .WORD 

.WORD 

.WORD 
SCALE1:  .WORD 

.WORD 

.WORD 
ROT2 : .WORD 

.WORD 

.WORD 
TRAN2: .WORD 

.WORD 

.WORD 
S C A L E 2 :  .WORD 

.WORD 

.WORD 
R O T 3  : .WORD 

.WORD 

.WORD 
TRAN3: .WORD 

.WORD 

.WORD 
SCALE3:  .WORD 

.WORD 

.WORD 
, 

o \ o  
o \ o  
o \ o  
0 \105.  
0 \100.  
o \ o  
0\77777 
0\77777 
0\77777 
o\o 
o \ o  
o \ o  
0\387. 
0\100.  
o\o 
0\77777 
0\77777 
0\77777 
o \ o  
o\o 
o\o 
O \ 2 4 6 .  
0 \241.  
o \ o  
0\77777 
0\77777 
0\77777 

, VECTORS L I S T  FOR THE C O N T A I N I N G  BOXES 
, 
VLBOUNCE : 

.WORD 500. \500. 

.WORD O \ O  

.WORD 500. \925.  

.WORD [ D R A W I R E D l \ O  

.WORD 925. \925. 

.WORD [ D R A W I R E D I \ O  

.WORD 925. \5OO. 

23 



.WORD 

.WORD 

.WORD 

. WDRD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

VECTOR 

VL1: .WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD . WDRD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD . WDRD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 

LDRAWIREDl\O 
500 .  \500. 
[ORAWIREDl\O 
0.\500. 
o \ o  
0.  \925. 
IDRAWIREOl\O 
500. \925. 
IDRAWIREOI\O 
500. \500. 
IDRAWIREOI\O 
0.\500. 
LEOLIDRAWIREDl\O 

DEFINITIONS FOR THE ROTATING WHEELS 

0\100. 
o \ o  
17.\98. 
LDRAWIGREEN)\O 
O \ D  
fDRAWIREO)\O 
34. \94. 
[DRAWIWHITEl\O 
50. \87. 
LORAWIPINKl\O 
o \ o  
[DRAWIYELLOWl\O 
64.\77. 
LDRAWIBLUEI\O 
77.\64. 
LDRAWIWHITEI\O 
o \ o  
[DRAWIGREENI\O 

IORAWIREOl\O 
94.\34. 
[DRAWIPINKI\D 
o \ o  
LDRAWIWHITEl\D 
9%.\17. 
[DRAWIBLUEl\O 
100. \ D  
LDRAWIYELLOWI\O 
o \ o  
[ORAWIWHITEI\O 
9%.\-17. 
LDRAWIGREENl\O 
94. \-34. 
[DRAWIREDI\O 
D \ O  
LDRAWIGREENl\O 
87. \ - 5D .  
LDRAWIYELLDWI\O 
77. \-64. 
IDRAWIPINK)\D 
o \ o  
LDRAWIREDI\O 
64. \-77. 
LDRAWIWHITE)\O 
50. \-87. 

a7.\50. 

24 



.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD . WDRD 

.WORD 

.WORD . WDRD 

.WORD 

.WORD 

.WORD . WDRD 

. WDRD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

. WDRD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD . WDRD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

(DRAWIREDl\O 
o \ o  
(DRAWIGREENI\O 
34. \-94. 
[DRAWIYELLOWl\O 
17. \-98. 
(ORAWIWHITEl\O 
o \o  
(DRAWIBLUE)\O 
O.\-lOD. 
LDRAWIGREEN)\O 
-17. \ -98. 
[DRAWIREO)\O 
o \ o  
iDRAWIWHITEI\O 
-34. \-94. 
(DRAWIYELLDWl\O 
-50. \-87. 
(DRAWIGREEN)\O 
o \ o  
LDRAWIPINKI\O 
-64. \-77. 
(DRAWIWHITEI\O 
-77. \-64. 
(DRAWIRED)\O 
D \ O  
(DRAWIBLUEI\D 
-87. \-50. 
[DRAWIWHITEl\O 
-94. \-34. 
(DRAWIGREENl\O 
o \ o  
(DRAWIRED)\O 
-98. \-17. 
[DRAWIPINKI\O 
-100. \ o  
IDRAWIWHITEI\O 
o \ o  
(DRAWIYELLOW)\O 
-98. \ 17. 
(DRAWIGREENl\O 
-94. \34. 
(DRAWIWHITE)\O 
o. \o .  
[DRAWIPINK)\O 
-87. \50. 
[DRAWIYELLOWl\O 
-77. \ 6 4 .  
(DRAWIGREENl\O 
o \o  
[DRAWIREDI\O 
-64. \77. 
LDRRWIWHITEI\O 
-50. \87. 
[DRAWIYELLDWl\O 
o \ o  
[ORAWIPINK)\O 
-34. \94. 
(DRAWIGREENI\O 
-17.\98. 
1DRAWIWHITEl\O 



.WORD 

.WORD 

.WORD 

.WORD 
VL2 : . BLKW 
VL4 : . BLKW 
VL6 : . BLKW 
REG1 : .WORD 
REG2 : .WORD 
REG3 : . WORO 
R E C L I S T :  

.WORD 

.WORD 

.WORD 

.WORD 

o \ o  
[ O R A W I R E O I \ O  
0.\100. 
[ D R A W I G R E E N I E O L ) \ O  
120.I 0 
120.,0 
120.,0 
o \ o  
o \ o  
o \ o  

o \  1 
o \ o  
410. \499.  
[ B L A C K I E O L I \ O  

, A T T R I B U T E  TABLES F O R  

A T T A O l :  .WORD 0 
.WORD O \ O  
.WORD O \ O  
.WORD 0\100000 
.WORD 100\10200 
.WORD 0 

SHADE TABLE 

SHADE: .WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD 
.WORD . BLKW 

, 

o \ o  
0\377 
0 \ 3 17 1 4  
0\63231 
0 \114546  
0\146063 
0\177400 
63\146000 
1 4 6 \ 1 1 4 4 0 0  
231\63000 
314\31400 
314\0  
314\63 
231\146 
146\231 
63\314 
0\377 
239.,0 

FRAME COUNTER MEMORY 

COUNT: .WORD O \ O  
.END 

CHARACTERS 

;START ADDRESS OF FONT TABLE 
;CHAR WIDTH\HEIGHT 

;REO 

;GREEN 

;BLUE 

LOCATION 

26 



, 

References 
1. 

Conference, Nov. 1981, pp. 486-498. (Available as AIAA- 

Montoya, R. Jorge; England, J. Nick; Hatfield, Jack J.; 
and Rajala, Sarah A.: An Advanced Programmable/ 2. IDL2 Reference Manual. Ikonas Graphics System, Inc., 
Reconfigurable Color Graphics Display System for Crew 
Station Technology Research. A Collection of Techni- 3. The ADAGE AGG4 Programming Reference Manual, 
cal Papers-4th AIAA/IEEE Digital Avionics Systems 

81-2314.) 

Subsidiary of ADAGE, Inc., Mar. 1983. 

Rev. A. ADAGE, Inc., July 1984. 

27 



Table 1. Character Draw Times for New Microcode 

Character draw time, psec, 

Character Character on Character offset 
size, 32-pixel from 32-pixel 

pixels boundary boundary 
10 x 14 46 53 

with erase on 
Character draw time, psec, 

with erase off 
Character on Character offset 

32-pixel from 32-pixel 
boundary boundary 

24 34 

20 x 28 

Original 
character 

147 

Character at  any 

222 

size 
10 x 16 

108 

position 
280 

195 

32 x 32 1 217 I 366 I 165 I 295 I 

Table 2. Comparison of Character Draw Times Between New 
and Original Character Commands Using Autoclear To Erase 

Draw time, psec, with 
new character command 

character 32-pixel from 32-pixel 
size boundary boundary 

10 x 14 

20 x 28 

32 x 32 I 165 295 
2 0 x 3 2  I 680 

32 x 32 I 900 

28 



c l  

M 90 MAX 

RWY 10000 

HOLD 
TURB 
1 ENG 
DES 

ALT CAP 
ALT ARH 
ATT CSS 
LOC ARM 
TCHD 

I 1 

a A P S  
DESEENB MAX 2000 

000000 
00.00 

LLU 

TIME I 4100 DIR CRS 050 
DSR CRS 050 

//--- 

l~ \ * F6H\IJ \ 0 6  
\ \ 200 
\ 

\ 
80 

FMC 1 
MLS 1 
TRUE 

0000 0000 

I 
/ 

/ 

GS WIND TAS 183 180 4 000 * I \ / \ T j O  
A P W S T  / 

- 4  

Figure 1. Primary flight display of Advanced Concepts Simulator. 

29 



Video bus ~~~ 1 
A A A A 

I I 
Frame 
buffer 

memory 
(FBM) 

I 

T T Channel 'I 
Color 
maps 

(LUVO) 

Frame buffer Crossbar crossbar 
controller switch switch 

(FBC) (XBS) (CXBS) 

interface 

v v 
t 

I f 
32-bit IKONAS bus I 

L 

RGB video - output 

Main 
processor 

(BPS) 

Auxiliary 

Microcode 
memory 

Parallel 
processor 
(AGG4) 

I - - - - - -  
Onboard I 

I font I 

I memory I 

(OBFM) I 
,,,,,-I 

Figure 2. Block diagram of RDS 3000. 

30 



I 
I 

I 

Write mask 

11 

10 

XBS 
8 -  

- 7  

- 6  

- 5  

- 4  

- 3  

2 

1 

0 

PONG 
buffer 

Static 
bit 

planes 

PING 
buffer 

Blue 
video P- 

Green 
video 

Green 

-4- qq-~ video Red 

Figure 3. Double-buffering, crossbar switches, and masks. 

. 

31 



Set XBS to 
display Turn on Turn off 

new PING autoclear autoclear 
I 

MA1 024 
processor 

buf 

BPS 
processor 

Set XBS to 
display 

new PONG buffer 

Erase PONG buffer, 
no other processing 

going on 
(requires one video frame 

interval) 

Draw everything for next 
frame into PONG buffer 

Figure 4. Processor activity during frame update using original sequential code and autoclear. 

32 



, 
I 

BPS 
processor - 

Set XBS to 
display Turn on Turn off 

new PING autoclear autoclear 

- 

Set XBS to 
display 

new PONG 
buffer 

Transform coordinates 
for next frame 

Figure 5. Processor activity during frame update with coordinate transformations computed during 
autoclear interval. 

33 



Set XBS to 
Set XBS to display 

autoclear to AGG4 and buffer new PING autoclear 
display Turn on Turn off Pass parameters new PONG 

I 
I 

I 

I 

I Draw vectors, 
I polygons, etc., 
I into PONG buffer 

Erase PONG buffer, 
BPS working with 

MA1 024 to do I 

transformations I I 

(requires one video frame i 
interval) I I 

I 
I 
I 

t 2  

AGG4 
processor 

I I 
Draw 

characters 
into PONG buffer 

MA1 024 
processor 

Transform coordinates 
for next frame 

Figure 6. Processor activity during frame update with coordinate transformations computed during 
autoclear interval and AGG4 drawing characters. 

34 



I 

Draw vectors, polygons, 

matrices for MA1 024 
processor 

Set XBS to Erase rectangular Pass parameters etc., into PONG 
display new areas of old PONG to AGG4 and buffer and set up 
PING buffer buffer 

BPS 
processor 

AGG4 
processor 

t 
0 1  

t 
t 2  2m 

Set XBS to 
display new 
PONG buffer 

I \ 
Draw 

characters 
into PONG buffer 

MA1 024 
processor 

Transform 
coordinates for next 

frame 

Figure 7. Processor activity during frame update using selected area erase, with coordinate transforma- 
tions for next frame computed simultaneously with character generation by AGG4. 

35 



1024 raster lines 

Increment k 

+Y - 

a 

a 

a 

Screen origin 

32 words (@32 bits) 
per raster line, each 

word can contain one 
slice of the character 

font 

Figure 8. Frame buffer memory mapping. 

36 



Increasing k value 
4 

Pixel in 
slice 

Increasing 
n value 

Y 

9 8 7 6 5 4 3 2 1 0  

0 ........ 
1 
2 0 .  
3 0 .  

7 0 0 . 0 0 0 . .  

4 0 .  
5 0 .  

8 0 .  0 .  
9 0 .  0 .  
10 0 0 
11 0 0 
12 0 0 
13 0 0 
14 
15 

Two font slices per 32-bit word 

Font high half-word Font low half-word 

Odd slice Even slice 

- 0001 100001 11 11 10 -001 10000001 11 100 

0 Bit 31 - _ _ - - _ _ _ _ - _ _ _ - _ _ _ _ _ _ - - - - - - _ _ _ - - _ _ .  

Figure 9. Bit-mapped character generation. 



font storage 
& 

scratch memory 

Barrel shifter Barrel 
control - shifter 

\ 

1 

Slice register, _ _  - 
32 bits 

I I - I 1 

* - - - - -  

inserter register 
control mask & merge 

To IKONAS 
bus and -- display 

# memory # 

I 

Figure 10. Barrel shifter and inserter output register. 

38 



Bit 
number 

0 

31 

- 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 

- 

- 

- 
0 
0 
1 
1 
1 
1 
0 
0 
O 
0 
O 
0 
1 
1 
D 

0 
1 
1 
1 
1 
1 
1 
3 
3 
3 
3 
1 
1 
3 
I 
3 

e 

- 
Font entry Slice register 
in OFBM contents 

Barrel shifter 
output 

- 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
Q 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 - 

Left - 
mask 

Right - 
mask 

- 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

- 

- 
Inserter output Inserter output 

register register 
(before mask (after mask 

operation) operation) 

Pixel 
offset = 4 

- 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
p. 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 - 

Contents 
of FBM 
slice n 

Figure 11. Data flow through the barrel shifter with offset of 4 bits. 

39 



Bit 
number 

_. 

0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
1 
1 
0 

0 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 

0 

* 

0 
- 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
1 
1 
0 
e 
0 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 - 31 

- 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
Q 
0 
0 
0 
0 
0 
D 
1 
1 
1 
1 
0 
0 
0 
D 
D 
e - 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

r 

Font entry Slice register 
in OFBM contents 

Barrel shifter 
output 

- 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
Q 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 - 

Lefi mask 
FBM slice --I 

n 

Right mask 
FBM slice 

n 

Inserter output 7 
register Left mask 

(before mask FBM slice 

n+7- operation) 

Right mask 
FBM slice 

n+l 

Write to 
FBM slice 

n - 

r 
Pixel 

iffset = 20 

Write to 
FBM slice 

n+l 
__c 

Inserter output 
register 

(after mask 
operation) 

Figure 12. Data flow through the barrel shifter with offset of 20 bits. 

- 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
P 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 - - 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 

Contents 
of FBM 
slice n 

Contents 
of FBM 

slice n+l 

40 



- Screen + Y direction 

Barrel shifter 

0 

15 
16 

31 

FBM contents 
rm 

slice n 

Offset = 0 8 14 24 

Figure 13. Font bit manipulation for several FBM offsets. Locations of inserter output register left masks 
(lm) and right masks (rm) are also shown. 

41 



Before FBM write 

0 1  2 3  30 31 

FBM slice bits - 

0 1 2 3  30 31 

FBM slice bits - 
D 1- 0.. 

0 1 2 3  30 31 

FBM mask mode value 
(inserter output register) 

After FBM write 

Figure 14. FBM writes for first two pixel locations. 

42 



Old characters in string at 
old location 

Erase rectangle \ 

New characters 
at new location ' D E F  

Figure 15. Character erase and draw. 

43 



I 
I 

I -  
I 
I New character string I 

I parameters: I 

I string contents 
I string locat ions I 

b I 

I 

string contents 
string locations 
(PING) 

OBFM 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Old character string 
parameters: 
string contents 
string locations 
(PONG) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

processor I 
FBM 

44 



Nal8onal Aeronautics and 
%ace Administration 

1. Report No. 
NASA TM-4095 

Report Documentation Page 

2. Government Accession No. 3. Recipient's Catalog No. 

3. Performing Organization Name and Address 
NASA Langley Research Center 
Hampton, VA 23665-5225 

1. Title and Subtitle 5. Report Date 
High-speed Real-Time Animated Displays on the ADAGE@' 
RDS 3000 Raster Graphics System 

10. Work Unit No. 

505-66-41-05 
11. Contract or Grant No. 

7. Author(s) 
8. Performing Organization Report No. 

William M. Kahlbaum, Jr., and Katrina L. Ownbey 
L-16504 

7. Key Words (Suggested by Authors(s)) 
Computer graphics 
Computer animation 
Flight simulation 

18. Distribution Statement 
Unclassified-Unlimit ed 

13. Type of Report and Period Covered 
12. Sponsoring Agency Name and Address 

Technical Memorandum National Aeronautics and Space Administration 

9. Security Classif. (of this report) 20. Security Classif. (of this page) 
Unclassified Unclassified 

Washington, DC 20546-OOOi 14. Sponsoring Agency Code 

21. No. of Pages 22. Price 
45 A03 

I 

15. Supplementary Notes 

.6. Abstract 
This paper describes techniques to increase the animation update rate of real-time computer raster 
graphics displays. They were developed on the ADAGE@' RDS 3000 graphics system in support 
of the Advanced Concepts Simulator at the NASA Langley Research Center. These techniques 
involve the use of a special purpose parallel processor for high-speed character generation. The 
parallel processor includes the barrel shifter, which is a part of the hardware and is the key to the 
high-speed character rendition. The final result of this total effort was a fourfold increase in the 
update rate of an existing primary flight display from 4 to 16 frames per second. 

I I I 

ASA FORM 1626 0 ~ ~ 8 6  NASA-Langley, 1989 
For sale by the National Technical Information Service, Springfield, Virginia 22161-2171 


